Генетическая трансформация растений. Трансформация растений с помощью агробактерий

Материалы » Прикладные вопросы экологической генетики » Генетическая трансформация растений. Трансформация растений с помощью агробактерий

Одной из основных проблем при получении трансгенных растений был способ введения чужеродных генов в хромосомы растений, т.е. трансформация растительных клеток. Значительный прорыв был сделан при открытии возможности использования природной системы трансформации растений Тi-плазмидами почвенных агробактерий.

Ранее было известно, что некоторые виды почвенных бактерий (Agrobacteria) могут заражать двудольные растения и вызывать при этом образование специфических опухолей-корончатых галлов. Опухоли состоят из недифференцированных клеток, интенсивно делящихся и растущих в месте заражения. При культивировании in vitro клетки опухоли могут расти в отсутствие гормонов, необходимых для роста нормальных растительных клеток. Если после заражения все агробактерии инактивировать добавлением антибиотика, то клетки корончатых галлов сохраняют способность к неконтролируемому делению. Итак, присутствие агробактерий необходимо только для индицирования образования опухоли. Опухолевые клетки начинают синтезировать необычные для растения аминокислоты-опины (производные аргинина), которые используются агробактериями в качестве источника азота и углерода. Таким образом, при заражении растения агробактерий происходит перестройка метаболизма трансформированных растительных клеток, и они начинают синтезировать соединения, необходимые только для бактерий.

Тi –плазмиды представляют собой кольцевые молекулы ДНК длиной ≈ 200 т.н.п. В бактериальных клетках они способны реплицироваться автономно. Тi –плазмиды могут быть разделены на четыре группы по типу синтезируемых ими опинов. Чаще всего встречаются тi –плазмиды , кодирующие аминокислоты нопалин или октопин. Причем агробактериальная клетка может содержать только один тип плазмиды: либо октопиновую, либо нопалиновую.

Генетические исследования показали, что Тi- плазмиды имеют сходное строение и содержат последовательности, которые можно поделить на две группы: 1). Необходимые для метаболизма самой агробактерии (гены катаболизма опинов, точка начала репликации плазмиды и т.д ) 2). Необходимые для трансформации растительной клетки. При этом следует особо отметить, что гены первой группы имеют прокариотический тип промотора и могут функционировать только в бактериальной клетке, а второй группы могут работать в растительной клетке. Ко второй группе относятся гены, ответственные за индукцию опухоли и синтез опинов.

Трансформация растения в результате агробактериального заражения происходит следующим образом. Было показано, что агробактерия не входит в растительную клетку, не входит в нее и Тi-плазмида, но часть Тi-плазмиды переносятся в ядро растительной клетки и может встраиваться в растительный геном. Этот фрагмент Тi- плазмиды был назван Т-ДНК (от англ. Transforming DNA- трансформирующая ДНК). На концах Т-ДНК находятся прямые повторы (25н.п), которые необходимы для вырезания ее из состава плазмиды и интеграции в геном растений. Область Т-ДНК несет семь генов: ген, кодирующий синтез одного из опинов, а также шесть генов, кодирующих признаки опухолеобразования, причем два из них кодируют синтез ауксина, а один- синтез цитокинина. В результате экспрессии этих генов в трансформированных клетках меняется гормональный статус, что приводит к их дифференцировке и опухолеобразованию.

Процесс трансформации растения начинается с того, что агробактерии прикрепляется к растительной клетке в области поражения последней. При поранении растительная клетка выделяет во внешнюю среду специфическое фенольное соединение -ацетосиренгон. Итак, методы в то или ином сочетании позволяют получить многие гены, продукты которых- белки- известны и могут быть выделены хотя бы в малом количестве. Эти гены в дальнейшем могут стать объектом генно- инженерных манипуляций, задача которых получить их экспрессию в новом генетическом окружении.


Популярные статьи:

Потенциал-активируемые натриевые каналы
Методы, которые были использованы для характеристики молекулярной структуры АХР, были также успешно применены к потенциал-активируемым каналам. Ключевыми шагами в этом процессе были биохимическая экстракция и изоляция протеина с последующ ...

Металлсвязывающая способность флавоноидов
Флавоноиды также могут действовать как хелаторы ионов металла с радикалами О- и ОН*, так и на стадии продолжения цепи, выступая донорами атомов водорода для перекисных радикалов. Многие флавоноиды действуют как хелаторы ионов металлов пер ...

Выделение перитониальных макрофагов
Макрофаги выделяли сразу после умерщвления крысы (по средствам декапитации) Крыса закреплялась на препаратном столике брюшком к верху, брюшко обрабатывалось 70% этиловым спиртом, производился надрез кожи вдоль туловища с паховой области д ...