Генетика и эволюция. Этапы развития генетики ее роль в формировании теории эволюции.

Материалы » Основы естествознания » Генетика и эволюция. Этапы развития генетики ее роль в формировании теории эволюции.

Основополагающие законы Генетики были вскрыты чешским естествоиспытателем Генетика Менделем при скрещивании различных рас гороха (1865). Однако принципиальные результаты его опытов были поняты и оценены наукой лишь в 1900, когда голл. учёный Х. де Фриз, нем. - К. Корренс и австр. - Э. Чермак вторично открыли законы наследования признаков, установленные Менделем. С этого времени началось бурное развитие Генетики, утвердившей принцип дискретности в явлениях наследования и организации генетического материала и сосредоточившей главное внимание на изучении закономерностей наследования потомками признаков и свойств родительских особей.

Уже в первое десятилетие развития Генетика на основе объединения данных гибридологический анализа и цитологии возникла цитогенетика, связавшая закономерности наследования признаков с поведением хромосом в процессе мейоза и обосновавшая хромосомную теорию наследственности и теорию гена как материальной единицы наследственности. Хромосомная теория объяснила явления расщепления, независимого наследования признаков в потомстве и послужила основой для понимания многих фундаментальных биологических явлений. Под термином «ген», введённым в 1909 датским учёным В. Иогансеном, стали понимать наследственный задаток признака. Решающий вклад в обоснование хромосомной теории наследственности был внесён работами американского генетика Т. Х. Моргана (1911). Крупной вехой в развитии Генетика стало открытие мутагенного (т. е. изменяющего наследственность) действия ренгеновых лучей. Доказав резкое увеличение изменчивости генов под влиянием внешних факторов, это открытие породило радиационную генетику. Важное место в развитии теории гена заняли работы советских генетиков. А. С. Серебровским была поставлена проблема сложного строения гена. В дальнейшем (1929-31) им и его сотрудниками, особенно Н. П. Дубининым, была экспериментально доказана делимость гена и разработана теория его строения из субъединиц.

Уже открытие Менделем закономерностей расщепления показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном состоянии. Это устранило одно из самых серьезных возражений против дарвиновской теории эволюции, высказанное английским инженером Ф. Дженкином, утверждавшим, что величина полезного наследственного изменения, которое может возникнуть у какой-либо особи, в последующих поколениях будет уменьшаться и постепенно приближаться к нулю. Генетика обосновала положение, что генотип определяет норму реакции организма на среду. В пределах этой нормы условия среды могут влиять на индивидуальное развитие организмов, меняя их морфологические и физиологические свойства, т. е. вызывая модификации.

Однако эти условия не вызывают адекватных (т. е. соответствующих среде) изменений генотипа, и поэтому модификации не наследуются, хотя сама возможность их возникновения под влиянием условий среды определена генотипом. Именно в этом смысле Генетика отрицательно решила вопрос о наследовании признаков, приобретенных в течение индивидуального развития, что имело огромное значение как для утверждения дарвиновской теории эволюции, так и для селекции. Исследования показали, что природные популяции насыщены мутациями, главным образом рецессивными, сохраняющимися в гетерозиготном состоянии под покровом нормального фенотипа. В неограниченно больших популяциях при свободном скрещивании и отсутствии "давления" отбора концентрация аллельных генов и соответствующих генотипов(АА, Aa, aa) находится в определенном равновесии, описываемом формулой английского математика Генетика Харди и немецкого врача В. Вайнберга: p2AA+2pqAa+q2aa, где коэффициенты р и q - концентрации доминантного и рецессивного генов, выраженные в долях, т. е. р+q=1. В реальных природных популяциях концентрация мутантных генов зависит главным образом от "давления" отбора, определяющего судьбу носителей мутаций в зависимости от их влияния на жизнеспособность и плодовитость особей в конкретных условиях среды. Носители неблагоприятных мутаций удаляются, элиминируются отбором. Данные Генетика подтвердили основные идеи эволюционной теории Дарвина, вскрыв вместе с тем новые закономерности наследственности и изменчивости, на основе которых отбор создает бесконечно варьирующие формы живых организмов с их поразительной приспособленностью к условиям внешней среды.


Популярные статьи:

Биологическая безопасность при промышленном производстве
Безопасность производства и применения являются неотъемлемыми требованиями к любому технологическому процессу. Мерой безопасности на предприятии служит содержание в воздухе помещений и на поверхностях любых потенциально опасных материалов ...

Вместо заключения
Какие же практические выводы следуют из того, что на сегодняшний день удалось узнать о связи между активностью теломеразы, раковым ростом и старением клеток. Казалось бы, они лежат на поверхности: не хочешь стареть - активируй теломеразу; ...

Кровь как внутренняя среда организма. Основные функции крови
1. Дыхательная - доставка клеткам кислорода и удаление углекислого газа. 2. Трофическая (питательная) - кровь обеспечивает клетки питательными (глюкоза, аминокислоты, жиры) веществами, водой, витаминами, минеральными веществами. 3. Экск ...