Растения и высокая температура
Страница 2

Экологические различия устойчивости растений к высоким температурам.

Количественную характеристику жаростойкости растений дать не так просто, поскольку известно, что повреждающее действие экстремального фактора на живой организм зависит не только от интенсивности самого фактора, но и от продолжительности его влияния. Так, если растение в течение нескольких минут может выдержать 50—55°С, то при многочасовых экспозициях предельная температура окажется гораздо ниже, например, порядка 45°С. Сравнивать приводимые в литературе данные о температурной выносливости растений очень трудно, поскольку разные авторы используют в экспериментах неодинаковые по длительности экспозиции и различные критерии повреждения высокой температурой (появление видимых повреждений, начало отмирания листьев, снижение дыхания или фотосинтеза и т. д.).

При действии на клетку экстремальных высоких температур одновременно имеют место как повреждения и нарушения жизнедеятельности клетки, так и процессы адаптации и восстановления повреждений (репарации). В связи с этим различают (Александров, 1975) первичную теплоустойчивость - непосредственную реакцию клетки на повышение температуры, определяемую по различным признакам нарушения работы клетки при кратковременном (5-минутном) нагреве, и общую теплоустойчивость, определяемую при более длительных экспозициях, когда успевают включиться адаптационные и репараторные механизмы.

При сопоставлении общей теплоустойчивости у растений из различных по тепловым условиям местообитаний выявляется общая закономерность: четкое соответствие между температурными условиями обитания вида (в период активной жизни особей) и его выносливостью к высоким температурам. Можно проследить связь выносливости не только с общим температурным фоном, но и с температурным режимом листьев. Так, у африканских пустынных и саванных растений с интенсивной транспирацией, сильно охлаждающей листья, теплоустойчивость гораздо ниже, чем у видов со слабым транспирационным охлаждением. Такое же явление было обнаружено и у многих представителей средиземноморской флоры, причем различие теплоустойчивости у растений с разной интенсивностью транспирации достигало 12°С.

Экологические различия первичной теплоустойчивости также проявляются достаточно четко, причем особенно хорошо они видны при сравнении близких видов, живущих в условиях различного теплового фона. У северных форм теплоустойчивость ниже, чем у более южных, а у эфемерных и эфемероидных, вегетирующих ранней весной, ниже, чем у видов с летней вегетацией.

Есть отличия и у растений одних и тех же географических районов, но разных экологических ниш. У водорослей, живущих в литоральной (приливно-отливной) зоне и периодически подвергающихся высыханию и нагреванию на воздухе, общая устойчивость к нагреву, как и первичная теплоустойчивость, заметно выше (на 12— 13°С), чем у постоянно погруженных сублиторальных. Такие же различия теплоустойчивости в зависимости от глубины обитания и у водных цветковых растений.

Даже у одной и той же особи теплоустойчивость по-разному нагреваемых частей неодинакова: например, у сильно транспирирующего листа хлопчатника предел устойчивости 46°С, а у коробочек—50°С (последние обычно имеют температуру на несколько градусов выше, чем окружающий воздух). Интересно в этом отношении различие весенних и летних листьев медуницы Pulmonaria obscura; у первых, развивающихся в более прохладное время, теплоустойчивость заметно ниже, чем у летних.

Теплоустойчивость клеток растений - свойство динамичное, меняющееся при изменении температуры окружающей среды. Обнаружены два способа ее модификационного изменения (Александров, 1975). Один из них - так называемая тепловая настройка встречается у водорослей. Их теплоустойчивость смещается соответственно температуре среды, причем довольно быстро — в течение нескольких часов (так, у литоральной водоросли Fucus vesiculosus во время отлива теплоустойчивость повышается по сравнению с периодом прилива). Такое смещение обратимо.

Другой путь приведения теплоустойчивости клеток в соответствие с изменившимся тепловым фоном обнаружен у клеток мохообразных и цветковых растений: у них теплоустойчивость остается стабильной, если изменения температуры не выходят за пределы оптимальных и близких к оптимуму, но повышается при кратковременном действии высоких (супероптимальных) температур. Это явление было названо «тепловой закалкой». Оно наблюдается в природных условиях в периоды значительного повышения температур, благодаря чему растения способны переносить наиболее жаркие дни лета. Например, в Туркмении у ряда видов (злаков-—Aristida karelini, Arundo donax, древесных пород — Catalpa speciosa, Morus alba и др.) обнаружено, что в результате «тепловой закалки» теплоустойчивость повышается в самые жаркие летние месяцы и часы дня, так что в целом динамика первичной теплоустойчивости клеток хорошо согласуется с ходом температуры в течение не только вегетационного периода, но и в течение дня.

Страницы: 1 2 3


Популярные статьи:

Морфоанотомические основы поглощения и движения воды. Корневая система как орган поглощения воды
Рост корня, его ветвление продолжается в течение всей жизни растительного организма, то есть практически он не ограничен. Меристемы- образовательные ткани- расположены на верхушке каждого корня. Доля меристематических клеток сравнительно ...

Развитие представлений о движении
Гераклит: идея безостановочной изменчивости вещей Учение Аристотеля о движении как атрибуте материи и разнообразии форм движения Механическая картина мира: единственная форма движения — механическое перемещение Описание механического д ...

Факторы и критерии гоминизации
Гоминизация – это процесс очеловечивания обезьяны, начало которому положило формирование первых специфических человеческих особенностей, а завершением было возникновение человека современного типа, человека разумного. Соматология (от греч ...